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J. Phys. A: Math. Gen. 21 (1988) L1089-L1095. Printed in the UK 

LETTER TO THE EDITOR 

Integrable vertex models and extended conformal invariance 

H J de Vega 
Laboratoire de Physique Thdonque et Hautes Energiest, UniversitC Pierre et Marie Curie, 
Tour 16, le r  Ctage, 4 place Jussieu, 75252 Paris Cedex 05, France 

Received 28 July 1988 

Abstract. Transfer matrix eigenvalues are exactly computed for large but finite size for a 
general class of q-state vertex models ( q  different states per bond, 2 c q )  from their nested 
Bethe ansatz equations. The conformal dimensions here obtained vary continuously as 
functions of the anisotropy parameter and express nicely in terms of the Cartan matrix of 
the underlying Lie algebra. They indicate the presence of an extended conformal invariance. 

Exactly solvable gapless statistical models give, through their long-range behaviour, 
explicit realisations of conformal theories. The finite-size resolution of the Bethe ansatz 
equations following the methods of [l] provide the values of the central charge c and 
the conformal dimensions ( h ,  K) for integrable lattice models [ 1-41. Branching 
coefficients can be related to one-point functions [5]. It must be noticed that these 
conformal properties are associated with subdominant or dominant large-volume 
properties whereas the integrability properties linked to the presence of a Yang-Baxter 
algebra hold for all sizes. In this sense, integrable lattice models are richer than 
conformal field theories. 

The value of c is known for all fundamental vertex models with R matrices [3] 
associated with simply-laced Lie algebras and for the spin-S SU(2) model [6]. These 
results indicate the general formula for c [7]: 

x dim G c=- 
x + L  * 

Here dim G is the dimension of the Lie algebra, x the order of the Yang-Baxter 
representation and 6 the dual Coxeter number of G. In this way the gapless integrable 
theories associated with a Lie algebra G provide through their long-range behaviour, 
a realisation of the conformal algebra alternative to the Sugawara construction of [ 81. 

Let us now investigate the conformal dimensions h and K of these fundamental 
vertex models. 

Let us start by the q(2q - 1) vertex model of [9] in its gapless regime where q is 
the number of states per bond (this model turns out to be the critical regime of the 
elliptic model of [lo]). 

The Bethe ansatz equations for this model on a N x N lattice can be written as [9,11] 

‘f Laboratoire associi au CNRS UA 280. 
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where po = N, A ‘p’ = 0 and 

sinh(z+ia) 
sinh(z - ia) +(z, a) = i log +(+a, a)=+(71.-2cr). 

The Ilk) are half odd integers characterising the different eigenstates of the transfer 
matrix. The Z j k ’  with fixed k form a monotonic sequence for the antiferromagnetic 
ground state. In general it has jumps for some values iik’ of j,: 

The values A i k ’  associated with these missing half-integers are called holes and 
denoted e‘,“’. 

The free energy and the momentum are expressed in terms of solutions of (2) as 
i PI 

f N ( e ) = - -  N j = 1  +(Al”+i8 ,~y)+o(e-“N)  (4) 

where a > 0. Our aim is to compute the finite-size corrections to fN and p N ,  

=&(e )  -fa(@) 
( 5 )  

P N  = -ifN(o) 
at the leading 1/N2 order and to read from them the values of c, h and a using the 
predictions of conformal field theory: 

n-c 271. 
fN -fa = -- + F ( h + K )  6 N 2  N 

2n- - 

N 2  pN - pm = - ( h  - h ) .  

Define the functions 

They fulfill t ‘$ ) (A jk ’ )  = (277/N)Zjk’ and tg’(  O p )  = (271./ N) (1+  1:;’). The derivative 

is related in the N = 00 limit with the density of BAE real roots (equations (2.12)-(2.14) 
of [3]). We can show that ag)(A) - & ) ( A )  can be expressed as [3]: 

q-1  +m 

U C ) ( A ) - U Z ) ( A ) = -  dP/[Sk/S(A - p l ) - R k / ( A  - P I ) I S / ( P / )  (9) 
/ = I  --a3 

where 

and that &’(A) fulfills the integral equation 
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where 

(12) 
1 

Kj/(A = 2, [( 8j,/+l+ g j , / - l ) c b ’ ( A ,  t Y) - ?jlcb’(A, Y )I 

and & ( A )  is the resolvant of (lo),  i.e. R = ( 1  - K ) - ’ .  The explicit solution for & / ( A )  
and & ) ( A )  follows by Fourier transform 

sinh(fwlr) sinh[(fwy)(q - l,)] sinh($wyl,) sinh[(tw)(q - k)l  &.(x) = &(x) = 
sinh[$w( lr - y ) ]  sinh(twyq) sinh(4wy) sinh(fwyq) 

The finite-size corrections L N (  0)  can be written in an analogous way as 

Here 

An expression with the structure 

can be approximated for large N by [l] 

where *A: are the largest positive and negative roots of the BAE in the lth branch. 
Define 

,y(’)( t l )  = #(A: + t r )  (17) 

and the Fourier transforms 

which are analytic functions in iIm w > 0. One gets the following matrix Riemann- 
Hilbert (RH) problem by Fourier transforming.( 16) applied to (10) 

x ; ( W ) +  i k / ( W ) X : ( W )  exp[io(A:-A:)] 
q--l 

I =  1 

q-1  
& ( w )  exp[iw(A:-A:)] 

2 N  
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where terms of order exp(-2KAl) have been neglected and we concentrate first on 
the terms coming from AI  -A:. Matrix RH problems are not generally solvable by 
quadratures. Fortunately, we can solve (19) quite easily. Let us define the matrix 
functions G , ( w )  analytic in *Im w > 0 by 

R - ' ( w )  = G + ( w ) G - ( w )  G,(w) = 1. (20) 

Equations (12) and (13) yield 

sinh[$w( 7~ - r ) ]  
sinh($w.rr) 

R - l ( w )  = [2 cosh($wy) - Z ]  

where Z is a constant matrix: X l , j  = Sl , j+ l  + 
unitary transformation U. Therefore 

R-I diagonalises by an w-independent 

G,(w) = Ud,(w) U-' d*(w)11,= & 1 4 ( 4  dL(co)=l (22) 

and 

where the numbers PI are the eigenvalues of I;. The scalar RH problems (23) are solved 
by quadratures 

*Imz>O. 

Since G+(-w) = G-(w), we find that 

R-'(O) = G+(O)'. (25) 

It follows from (21)-(24) that 

G + ( w ) - '  w+oD = 1 -g/w+g2/2w2+0(i/w3) (26) 

where g is a constant symmetric matrix. Using (20) the RH problem (19) becomes 

where the @(U) are holomorphic in *Im w > 0, 

O:(O)+ & ( w )  =exp(-iwA+) G-(W)lkGk(W) (28) 
k 

and we have set A: = A+ (1 S IS q - 1) since no consistent solution of this problem 
seems to exist otherwise. Equation (27) tells us that P I ( @ )  is an entire function of w. 
Finally we get the solution of the RH problem (29) as 
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and P I ( @ )  follows by letting w += 00 in (27) and using XT(c0) = 0. We find 
iw  i q-1 

P1(w)=-  - 1 -  +- *). 
2N ( 6Nv',(A+) 6Ns=1uN(A ) 

In  addition (13) and (28) yield 

(31) 
exp(-KA') iK4-I 

l r  s = l  
Q : ( w ) =  - c GL(iK)mS+o[exp(-2KA+)] 

where K = 2 r / (  'yq) and m, = sin(slr/q). Contour integration and (18) give 

X : ( w )  dw = -i lim [wX:(w)]. 
o + m  

Now, combining (29) and (32) yields 
K q-1 

N&(A+) =- plN exp(-KA+)+ti c g d l  +PI) 
lr s = 1  

where 

p I  = G;(iK)m,. q - l  gls Ll NU&(A+) s=l 

For the ground state 

jA: & ) ( A )  dA = 1/2N. 

Therefore (17) and (18) tell us that X:(O) = 1/2N.  Using now (29) and (30) yields 

(35) 
2 N  - exp(-KA+)pI = 1 -iipl. 
lr 

Now, for an excited state with spin sk( sk E 2, 1 S k 6 q - 1) and BJ holes near the end 
points *A", we find 

2N - exp(-KA+) = 1 - i i p , + y l  G+(o)U' 
lr j - I  

and an analogous formula for A-. Here 

s k  = f Mkj Apj Apj E f i  - N (  1 - j / q )  

and M is the Cartan matrix for the Lie algebra Aq-l 

Mkl 2 a k I  - a k , I + I  - 8k.l-1 ( 4 7 - 1 ) .  

The finite-size connection L N (  e )  can be expressed with the help of (14), ( 1 9 ,  (17), 
(29) and (34) as 

with a similar expression for 8- -8, A+t*A-. Finally, we get for the ground state 
using (35) 

l r q - 1  LN ( e )  = - - - sin( KO). 
6 NZ 
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Therefore c = q - 1 as in [3]. For the low-lying excited states, (36) and (37) yield 

(39) 
l r q - 1  2vi  
6 N 2  N 

L N ( 0 )  = -- - s i n ( K B ) - ~ [ h  exp(-iKO)-iexp(iKO)] 

where 

h is given by an analogous expression with B: t) B;. (h, 6) are then the conformal 
dimensions of the operators associated with these excited states [12]. The scale 
dimensions and spin for the primary fields are 

When q = 2 we recover the formulae of [ 1,2]. 
Gapless integrable models associated with all Lie algebras are known and their 

Bethe ansatze have been derived [ l l ,  131 or conjectured for all cases [14]. Their 
finite-size properties can be derived following the same steps of (2)-(37) with obvious 
changes for the resolvent and densities [equations (13), (21) and (23)]. In the case of 
models associated with a simply laced Lie algebra G one finds 

c = rank G 

(as in [3]). Equations (40) and (41) for the conformal dimensions hold with M being 
the Cartan algebra associated with G.  That is, 

where CY;, aI are simple roots of the simply laced algebra G. 
It must be remarked that (40) and (41) coincide with the conformal dimension of 

conformal field theories possessing extended Virasoro algebras when y = r / ( m  + l), 
( m  = q + 1, q + 2, . . .) [ 151. More precisely one should consider a RSOS version of the 
models considered in this letter. In this way the central charge takes the values [15] 

m a q + l .  
m ( m + l )  

These integrable lattice models provide explicit realisations of the extended Virasoro 
algebra through their long-range behaviour. They may be a very useful framework for 
uncovering the physical meaning of the extended conformal symmetries. 
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